Workshop "Infrastructures for energy transition" @ IFSTTAR, Paris, Dec 4, 2018

Exploring Material-Energy Nexus for Resource and Climate Strategies

Gang Liu

Professor WSR in Industrial Ecology
SDU Life Cycle Engineering, University of Southern Denmark
Email: gli@kbm.sdu.dk

SDU & LIFE CYCLE ENGINEERING

Table 1 Mitigation wedges and their implementation in the model.		
Wedge code	Description	Model implementation (details in the Supplementary information)
M1-NPC	Near-perfect collection	Collection rates of BC, TAU, TAE and TOT obsolete products will gradually reach 95% by 2050 Collection rates of all other obsolete products will gradually reach 90% by 2050
M2-TYI	Technologies for yield improvement	Yield ratios (the efficiency of metal to downstream process relative to the sum of all process inputs) of all semi-manufacturing processes will gradually reach 90% by 2050
M3-TEE	Technologies for energy and emissions efficiency improvement	Yield ratios of all manufacturing processes will gradually reach 95% by 2050 Inert anode and wetted cathode: electrolysis energy intensity is projected to reach 13.11kWh kg by 2030, and starting then all process emissions from electrolysis are set to zero, whereas anot production emissions increase by a factor of 2.08 (ref. 8) Global average energy intensity of bauxite refining is set to reach today's best-available-technology level (9.5 GJ t ⁻¹) in 2020 (ref. 2) and keep an annual improvement of 0.25% afterwards ¹⁴ Energy intensities of all semi-manufacturing processes are reduced by 25%, as demonstrated the semi-manufacturing processes.
M4-CCS+	CCS and electricity decarbonization	continuous strip casting for rolling ⁸ Oxy-fuel combustion: a 55% reduction is achieved on all natural gas energy use in the model ¹ CCS will be gradually implemented at 85% effectiveness until 2030 (ref. 1) on all coal power supplying electrolysis in the contract mix Decarbonizing the electricity supply in the contract mix by 30% through greater use of renewables, clean coal and others

