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We SMILE (societal metabolism and industrial ecology)

- and strive to map and inform sustainable socio-metabolic transition
for a circular, lean, and steady-state economy
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Addressing sustainability in a socio-metabolic framework

- The material-energy-emission nexus
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1. Societies build on materials, which lead to energy use throughout the life cycle

2. The renewable energy transition relies on (critical) materials
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Case I: Materials > Energy Nexus: Aluminium
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Opportunities and challenges of aluminium recycling
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Modelling energy use & 6HG emissions associated
with the material cycle

» Mass flow layer: mining, refining, production, use, recycling...
» Energy layer: direct energy use (nine types), indirect energy use
» Emissions layer: direct emissions, indirect emissions, process emissions
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The global Al cycle: The more circular, the better?

Manufacturing Waste management

Mining Refining Smelting Casting  Semi-manufacturing

BC: building and construction

TAU: transportation-

automobiles and light trucks

0.04 32 TAE: transport.-aerospace

TOT: transportation-
truck/bus/trailer/rail/other

PCA: packaging-cans
POT: packaging-other (foil)
ME: machinery and equipment
ECA: electrical-cable

EOT: electrical-other

CD: consumer durables

OTN: other-non-destructive
OTD: other-destructive uses

TAU10S

pent pot  Dross
line01 02

Recyclin

TAE 4

“Mining loss Gan sheet58)
18

Internal remelting

308u1 W)y
L' uonesaupuy/jjypue]

70 550| Buisser01g

Others 1.4

dross 0.9 52

Pre-consumer (semi-manufacturing) scrap 24.8 |Processes

Pre-consumer (manufacturing) scrap 8 st

Unit: Mt or Mt yr”

Post-consumer scrap 9.8

Global anthropogenic aluminium cycle in 2009
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Pre-melt waste
management

Semi-manufacturing

Post-consumer
scrap recycling

Internal recycling

Smelting
= Natural gas
Anode Hard coal
= Heavy oil

Bauxite refining

¥ Diesel and others
¥ Indirect emissions
Mining ® Process emissions
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Then how about the future?
Future emissions «— Future Al cycle and flows < Future stock patterns. ..
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A stock-driven model for future scenarios
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Hypothesis: It is unlikely that per-capita Al stocks will grow indefinitely at the present
speed. Most likely, growth will eventually slow down, level off or even decline over the
long term as services provided by aluminum products may become saturated or as less -
aluminum is used to provide certain services.
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Mitigation wedges and their implementation

Table 1| Mitigation wedges and their impl

in the model.

Wedge code  Description

Model implementation (details in the Supplementary information)

M1-NPC Near-perfect collection

M2-TYI Technologies for yield improvement  Yield ratios (the efficiency of metal to downstream process relative to the sum of all process
inputs) of all semi-manufacturing processes will gradually reach 90% by 2050
Yield ratios of all manufacturing processes will gradually reach 95% by 2050

M3-TEE Technologies for energy and Inert anode and wetted cathode: electrolysis energy intensity is projected to reach 13.11kWh kg™

emissions efficiency improvement

M4-CCS+ CCS and electricity decarbonization
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Collection rates of BC, TAU, TAE and TOT obsolete products will gradually reach 95% by 2050
Collection rates of all other obsolete products will gradually reach 90% by 2050

by 2030, and starting then all process emissions from electrolysis are set to zero, whereas anode
production emissions increase by a factor of 2.08 (ref. 8)

i i i ining is set to reach today’s
best-available-technology level (9.5 GJt™") in 2020 (ref. 2) and keep an annual improvement of
0.25% afterwards™
Energy intensities of all semi-manufacturing processes are reduced by 25%, as demonstrated by
continuous strip casting for rolling®
Oxy-fuel combustion: a 55% reduction is achieved on all natural gas energy use in the model’
CCS will be gradually implemented at 85% effectiveness until 2030 (ref. 1) on all coal power
supplying electrolysis in the contract mix

izi icil in the contract mix by 30% through greater use of
renewables, clean coal and others
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The 'scaling’ effect:

Al stocks in use
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Case II: Materials > Energy Nexus: Carbon footprint
of infrastructure development
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Carbon footprint of built environment stocks
(Carbon Replacement Value, CRV 2008)

b)

70 CRV,qq0f 2008 Stocks | Future Emissions C)
B B Auninum [ CRV, Future Stocks —_
s, e B W e || T
tal
i : Cement o
USA, Netherlands, Germany :'9’“ ng,‘:: Gy I; I:,.I e Emissions Budget = 900
50 France, Japan e Loree. 5 2000.2050 for 2
S Replacement Value (CRV) s k T S
Canada Scenario < % rget g s00
UK, Spain 1 = £
Australia, Sweden %5 700
50 " =
SOUTH Korea
Dp\:m;; + Annex | average ‘_ﬁ 600
Russia, Ukraine E s
S

lsaudi Arabia

CRVFuture

Carbon Replacement Value (CRV,, ) of In-Use Stocks [tCO,eq/cap]

Global average

Indonesia, Pakistan
Congo, Nlﬂeria
angladesh

Ethiopia <— Population Growth 2008-2050 —»

4 5 6 7 8 9
Cumulative Pop ulatuﬂ [Biﬂiuvn Persons]

7 LIFE CYCLE
ENGINEERING



15/01/2019

Case III: Energy > Materials Nexus: Danish wind energy
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Historical and future in-use capacity of Danish
.
wind energy system
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A stock-driven & bottom-up demand forecasting
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Do we have enough materials and secure supply?
[unit: Mg] Neodymium demand
unit: Mg] Steel
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¢ Penetration rate of PM WTs: 15% (2015) to 50% (205Q
¢ Nd content: 196 kg/MW
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Can we handle the (yet to come) waste issues?
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